25,280 research outputs found

    Mathematical model investigation of long-term transport of ocean-dumped sewage sludge related to remote sensing

    Get PDF
    An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, horizontal diffusion coefficients, particle size distributions, and specific gravities. The results presented are a quantitative description of the fate of a negatively buoyant sewage sludge plume resulting from continuous and instantaneous barge releases. Concentrations of the sludge near the surface were compared qualitatively with those remotely sensed. Laboratory study was performed to investigate the behavior of sewage sludge dumping in various ambient density conditions

    Family of Hermitian Low-Momentum Nucleon Interactions with Phase Shift Equivalence

    Full text link
    Using a Schmidt orthogonalization transformation, a family of Hermitian low-momentum NN interactions is derived from the non-Hermitian Lee-Suzuki (LS) low-momentum NN interaction. As special cases, our transformation reproduces the Hermitian interactions for Okubo and Andreozzi. Aside from their common preservation of the deuteron binding energy, these Hermitian interactions are shown to be phase shift equivalent, all preserving the empirical phase shifts up to decimation scale Lambda. Employing a solvable matrix model, the Hermitian interactions given by different orthogonalization transformations are studied; the interactions can be very different from each other particularly when there is a strong intruder state influence. However, because the parent LS low-momentum NN interaction is only slightly non-Hermitian, the Hermitian low-momentum nucleon interactions given by our transformations, including the Okubo and Andreozzi ones, are all rather similar to each other. Shell model matrix elements given by the LS and several Hermitian low-momentum interactions are compared.Comment: 10 pages, 7 figure

    Microscopic Restoration of Proton-Neutron Mixed Symmetry in Weakly Collective Nuclei

    Get PDF
    Starting from the microscopic low-momentum nucleon-nucleon interaction V{low k}, we present the first systematic shell model study of magnetic moments and magnetic dipole transition strengths of the basic low-energy one-quadrupole phonon excitations in nearly-spherical nuclei. Studying in particular the even-even N=52 isotones from 92Zr to 100Cd, we find the predicted evolution of the predominantly proton-neutron non-symmetric state reveals a restoration of collective proton-neutron mixed-symmetry structure near mid-shell. This provides the first explanation for the existence of pronounced collective mixed-symmetry structures in weakly-collective nuclei.Comment: 5 Pages, 3 figure

    Successive Coordinate Search and Component-by-Component Construction of Rank-1 Lattice Rules

    Full text link
    The (fast) component-by-component (CBC) algorithm is an efficient tool for the construction of generating vectors for quasi-Monte Carlo rank-1 lattice rules in weighted reproducing kernel Hilbert spaces. We consider product weights, which assigns a weight to each dimension. These weights encode the effect a certain variable (or a group of variables by the product of the individual weights) has. Smaller weights indicate less importance. Kuo (2003) proved that the CBC algorithm achieves the optimal rate of convergence in the respective function spaces, but this does not imply the algorithm will find the generating vector with the smallest worst-case error. In fact it does not. We investigate a generalization of the component-by-component construction that allows for a general successive coordinate search (SCS), based on an initial generating vector, and with the aim of getting closer to the smallest worst-case error. The proposed method admits the same type of worst-case error bounds as the CBC algorithm, independent of the choice of the initial vector. Under the same summability conditions on the weights as in [Kuo,2003] the error bound of the algorithm can be made independent of the dimension dd and we achieve the same optimal order of convergence for the function spaces from [Kuo,2003]. Moreover, a fast version of our method, based on the fast CBC algorithm by Nuyens and Cools, is available, reducing the computational cost of the algorithm to O(dnlog(n))O(d \, n \log(n)) operations, where nn denotes the number of function evaluations. Numerical experiments seeded by a Korobov-type generating vector show that the new SCS algorithm will find better choices than the CBC algorithm and the effect is better when the weights decay slower.Comment: 13 pages, 1 figure, MCQMC2016 conference (Stanford

    Distance-two labelings of digraphs

    Full text link
    For positive integers jkj\ge k, an L(j,k)L(j,k)-labeling of a digraph DD is a function ff from V(D)V(D) into the set of nonnegative integers such that f(x)f(y)j|f(x)-f(y)|\ge j if xx is adjacent to yy in DD and f(x)f(y)k|f(x)-f(y)|\ge k if xx is of distant two to yy in DD. Elements of the image of ff are called labels. The L(j,k)L(j,k)-labeling problem is to determine the λj,k\vec{\lambda}_{j,k}-number λj,k(D)\vec{\lambda}_{j,k}(D) of a digraph DD, which is the minimum of the maximum label used in an L(j,k)L(j,k)-labeling of DD. This paper studies λj,k\vec{\lambda}_{j,k}- numbers of digraphs. In particular, we determine λj,k\vec{\lambda}_{j,k}- numbers of digraphs whose longest dipath is of length at most 2, and λj,k\vec{\lambda}_{j,k}-numbers of ditrees having dipaths of length 4. We also give bounds for λj,k\vec{\lambda}_{j,k}-numbers of bipartite digraphs whose longest dipath is of length 3. Finally, we present a linear-time algorithm for determining λj,1\vec{\lambda}_{j,1}-numbers of ditrees whose longest dipath is of length 3.Comment: 12 pages; presented in SIAM Coference on Discrete Mathematics, June 13-16, 2004, Loews Vanderbilt Plaza Hotel, Nashville, TN, US
    corecore